Implementation Issues in Modern Cache Memory

Jih-Kwon Peir
Windsor W. Hsu
Alan Jay Smith

[

Report No. UCB/CSD-98-1023

/l November 1998

4

\

\

| | Computer Science Division (EECS)
\ University of California

| Berkeley, California 94720

\

\

TO APPEAR IN IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2 1

Implementation Issues in Modern Cache Memory

Jih-Kwon Peir Member, iEEE, Windsor W. Hsu Student Member, IEEE, and Alan Jay Smith, Fellow, IEEE

Abstract— As the performance gap between processors and
main memory continues to widen, increasingly aggressive
implementations of cache memories are needed to bridge the
gap. In this paper, we consider some of the issues that are
involved in the implementation of highly optimized cache
memories and survey the techniques that can be used to
help achieve the increasingly stringent design targets and
constraints of modern processors. In particular, we consider
techniques that enable the cache to be accessed quickly and
still achieve a good hit ratio. We also consider issues such as
area cost and bandwidth requirements. Trace-driven simu-
lations of a TPC-C-like workload and selected applications
from the SPEC95 benchmark suite are used in the paper to
compare the performance of some of the techniques.

Keywords— Cache memory, cache access mechanism, ad-
dress translation, cache area and bandwidth.

I. INTRODUCTION

Cache memories are small fast memories used to tem-
porarily hold the contents of portions of main memory that
are (believed to be) likely to be used. The basic concepts
of using cache memories to improve processor performance
have been well studied and understood. See for exam-
ple [66], [67]. Today, caches have become an integral part of
all processors. However, as the performance gap between
processor and main memory continues to widen, increas-
ingly optimized implementations of caches are needed. In
this paper, we consider some of the issues in implementing
aggressive cache memories and survey the techniques that
are available to help meet the increasingly rigorous design
targets and constraints of modern processors.

The ability of caches to bridge the performance gap is
determined by two primary factors — the time needed to
retrieve data from the cache and the fraction of memory
references that can be satisfied by the cache. These two fac-
tors are commonly referred to as access (hit) time and hit
ratio respectively [66], [67]. The access time is especially
critical for first level (L;) caches because a longer access
time typically implies a slower processor clock rate and/or
more pipeline stages. In order to minimize access time,
cache access should be triggered as soon as the address of
the memory reference is available. However, the virtual
memory architecture, by imposing a potentially many-to-

This work is supported in part by the National Science Foundation
under grants MIP-9624498, MIP-9116578 and CCR-9117028, by the
State of California under the MICRO program, and by IBM, Intel,
Sun Microsystems, Fujitsu Microelectronics, Toshiba America, Cir-
rus, Sony Research Laboratories, Microsoft and Quantum.

Jih-Kwon Peir is with Computer and Information Science and En-
gineering Department, University of Florida, Gainesville, FL. 32611,
peirQcise.ufl.edu.

Windsor W. Hsu and Alan Jay Smith are with Computer Sci-
ence Division, Department of Electrical Engineering and Com-
puter Sciences, University of California Berkeley, CA 94720,
{windsorh,smith}@cs.berkeley.edu. Windsor W. Hsu is also with
Computer Science Department, IBM Almaden Research Center, San
Jose, CA 95120, windsor@almaden.ibm.com.

one mapping of virtual to physical addresses, places con-
straints on how this can be achieved. The hit ratio is also
critical, both because misses impose delays, and because
off-chip bandwidth, especially when there is a shared bus,
is a very limited resource.

A. Cache Fundamentals

CPU caches are normally associative memories; the key
is a (real or virtual) memory address. Because of the diffi-
culties of building highly associative memories, most CPU
cache memories are organized as two-dimensional arrays.
The first dimension is the set, and the second dimension is
the set associativity. The set ID is determined by a func-
tion of the address bits of the memory request. The line
ID within a set is determined by matching the address tags
in the target set with the reference address. Caches with
set associativity of one are commonly referred to as direct-
mapped caches while caches with set associativity greater
than one are referred to as set-associative caches. If there
is only one set, the cache is called fully-associative.

Each cache entry consists of some data, and a tag that
identifies the main memory address of that data. Whether
a memory request can be satisfied by the cache is deter-
mined by comparing the requested address with the ad-
dress tags in the tag array. There are thus two parts to a
cache access. One is to access the tag array and perform
the tag comparison to determine if the data is in the cache.
The other is to access the data array to bring out the re-
quested data. For a set-associative cache, the results of the
tag comparison are used to select the requested line from
within the set driven out of the data array.

In most computers, caches are accessed on the real mem-
ory address, whereas the ALU generates the virtual mem-
ory address. To speed up the translation process (and to
not have to access the main memory page tables), another
cache, one for the page tables, is used. The page table
cache is most commonly known as the Translation Looka-
side Buffer (TLB) [4]. The need to translate the virtual
address to the real address may further delay cache access.

B. Performance Evaluation

Trace-driven simulation is the standard methodology for
the study and evaluation of cache memory design; some
trace driven simulation results appear later in this paper.
Trace driven simulation is a form of event driven simula-
tion, in which the events consist of those collected from
a real system rather than those generated randomly. For
cache memory studies, the traces consist of sequences of
memory reference addresses. Traces may be collected by a
variety of hardware and/or software methods. A compre-
hensive discussion of this technique and its strengths and
weaknesses is in [68].

Among the traces used in this paper is a trace of
the server side of a workload similar to the Transaction
Processing Performance Council’s benchmark C (TPC-C).
This was collected with a software tracing tool on an IBM
RISC System/6000 system running AIX. Our other traces
consist of five integer-intensive programs (Compress, Gcc,
Go, Li, and Vortex) and three floating-point intensive ap-
plications (Apsi, SuZcor, and Turb3d) from the SPEC95
benchmark suite. These traces were collected with the
Shade tool on SUN Sparc Systems running Solaris [72].
In our simulations, the first 50 million instructions of each
trace are used for cache warm up purposes.

II. CACHE IMPLEMENTATION ISSUES
A. Addressing Constraint

In order to minimize effective memory access time, the
access should be triggered as soon as the effective address
of the memory reference becomes available. In most com-
puters, however, caches are addressed, as noted above, with
the physical address, and thus there is a delay for trans-
lation. This delay can often be partially overlapped, but
it is hard to avoid completely. Virtually addressed caches
do not require address translation during cache access, but
the fact that multiple virtual pages may be mapped to the
same physical page greatly complicates their design.

A.1 Physical Address Cache

As described earlier, caches are organized as 2-
dimensional arrays and are accessed in a two phase cycle.
In the first phase, a cache set is selected by using a por-
tion of the address known as the indez bits. In the second
phase, the remaining part of the address is used to make a
further selection from within this cache set to yield either a
cache miss determination or the requested data. This two
phase access cycle means that only a portion of the address
needs to be available at the onset of cache access.

There are various techniques that exploit this two phase
access cycle to enable a physically addressed cache to be ac-
cessed without requiring an extra address translation cycle.
Because only the page number bits need to be translated,
the untranslated bits are immediately available to start the
access. For example, if the untranslated bits can be used
to select the set, then for a 25 page size, we can overlap
set selection with translation, and then do a J-way asso-
ciative search among the elements of the set, for a cache
of size J x 2K . However, there is a practical limit to this
approach because increasing the set-associativity provides
only a diminishing return on cache hit ratio but adds hard-
ware complexity and adversely impacts the access time [23].

Rather than limiting the index bits to within the page
offset, another approach is to increase the number of ad-
dress bits available before address translation. A straight-
forward way to achieve this is to increase the page size [27].
For many computer architectures, however, the page size
is typically fixed and enlarging it would require substantial
changes to both the architecture and the system software.
In addition, it may lead to more memory fragmentation.

In some newer architectures, however, the page size may
be variable. A technique that can be used to increase the
number of address bits available before address translation
is to restrict the virtual to physical page mapping so that
the low-order bits of the physical and virtual page num-
bers are identical [25]. This amounts to implementing a
set-associative rather than fully-associative main memory.
This technique, which has also been referred to as page
coloring, may increase the number of page faults [13], al-
though with associativities of 8 and larger (in the main
memory), the effect is likely to be negligible.

Another way to make more address bits available before
address translation is to predict the additional address bits.
An example of a good predictor is the content of the base
register that is used to compute the effective address [24].
At the address generation stage, the low-order page address
bits in the base register are used to index into a history-
based prediction table to obtain the needed physical ad-
dress bits. The base register content is an accurate predic-
tor for the needed physical index bits because the displace-
ment for computing the effective address is usually small
and recently used pages tend to be re-referenced, i.e. there
is locality of reference. Results reported in [24] show that
a 128-entry direct-mapped prediction table can achieve ac-
curacy exceeding 98% for commercial workloads. Similar
prediction schemes are presented in [13], [6]. The MIPS
R6000 [74] implements a TLB-slice which is essentially a
predictor based on the low-order virtual page address.

A.2 Virtual Address Cache

Instead of using bits from the virtual address as a pre-
dictor for the physical address, a different approach is to
use the virtual address to directly access the cache [55],
[66], [83]. This avoids the delay for translation; other TLB
functions such as page protection, update, and reference in-
formation can be resolved in parallel with cache access [84].
In addition, all the addresses must be tagged with an ad-
dress space identifier or else the cache must be purged on
every task switch [66].

The most serious drawback of the virtual address cache is
that multiple virtual addresses may be mapped to the same
physical address, i.e. synonyms may occur. Synonyms oc-
cur when code or data is shared. In addition, on some
systems, the supervisor and its data structures exist in all
the address spaces. Thus, in a virtual address cache, the
absence of an address tag does not imply a miss because
the data may be located elsewhere in the cache under a
different virtual address. This is known as the synonym
problem [5], [60], [66].

The usual approach to handling synonyms is to prevent
them from being present in the cache at the same time.
Such an approach has the nice property that it adds no
overhead to the frequent case of a cache hit. The only
penalty comes in the less frequent case of a cache miss
during which the cache has to be searched for any syn-
onym entry. The way to detect synonyms is to map the
requested virtual address into its physical address and see
if any of the virtual addresses in the cache maps into the

same physical address. In general, a reverse translation
buffer (RTB) is needed in order for this approach to be
feasible [66]. Such a buffer is accessed with the physical
address and indicates the cache line that is associated with
that physical address [5], [60], [66], [20]. This in effect
maintains a physical tag for each and every line present in
the virtual address cache, meaning that a cache line has to
be invalidated whenever its physical tag is replaced.

One way to reduce the complexity in handling synonyms
is to make sure that the index bits used to select the
cache set are the same for both the physical and virtual
addresses [25], [10], [66], [74]. In this case, the reverse
mapping of cache lines can be implemented by simply as-
sociating both the virtual and physical address tags with
each cache line. However, as mentioned earlier, this re-
stricted page mapping may result in more page faults [13].
Since the index bits are the most critical for cache access, a
hybrid approach is to use virtual indices with physical tags.
In this case, synonyms are mapped to a small number of
sets determined by the number of index bits beyond the
page offset. Software approaches have also been proposed
to eliminate synonyms. See for instance [83], [35], [80].

A.3 Interesting Implementations

Typically, a combination of the above techniques and
other engineering solutions are used to circumvent the ad-
dressing constraint. For instance, the IBM-3090 has a uni-
fied 128KB L; cache with physical tags [45], [75]. The tag
array is organized as 32-way set-associative to limit the
index bits to within the 4-KB page offset. The data ar-
ray has a virtually-indexed 4-way set-associative design to
avoid fetching all 32 double words out of the data array
simultaneously. As a result, there is a primary set indexed
by including the low-order 3 bits (bits 17-19) of the vir-
tual page address and seven synonym sets indexed by using
other combinations of the 3 bits. In case of a synonym hit,
the correct data location is available from the tag compari-
son and the data can be fetched out in the next cycle. The
synonym line is moved to the primary set afterwards. This
solution becomes prohibitively expensive with larger caches
because of the higher set associativity of the tag array.

The recently announced IBM S/390-G4 CMOS main-
frame processor has a 64KB 4-way set-associative unified
Ly cache [79]. With 4KB pages, two of the address bits
(18:19) needed to index the cache are subject to transla-
tion. These two address bits are predicted prior to the
cache access cycle [24], [79]. An Absolute Address History
Table (AAHT) is used to maintain the recent associations
between the physical address bits (18:19) and the values in
the base and the index registers. At the address genera-
tion cycle, AAHT is accessed to obtain the predicted bits
(18:19) for accessing the cache in the following cycle.

The UltraSPARC-IIi [73] has 16KB L; instruction and
data caches. The instruction cache is 2-way set-associative,
physically indexed and tagged. However, for fast access
time, the data cache is direct-mapped with virtual in-
dex bits and physical tags. The approach taken in the
UltraSPARC-IIi is to rely on software to force synonym

lines to have the same index bits. In cases where the syn-
onyms cannot be mapped to the same index bits, the soft-
ware either flushes the data cache or turns off caching for
the synonym pages.

In a two-level cache design, a natural way of incorporat-
ing both the virtual and physical cache designs is to have
a first-level virtual cache for fast access and a second-level
physical cache for resolving synonyms [77]. In this case,
the tag array of the Lo cache acts as a means of locating
Ly cache lines via their physical addresses. For instance,
the MIPS R10000 [85] has 32KB 2-way set-associative L
instruction and data caches. Both caches are virtually in-
dexed and physically tagged. The L, cache is physically in-
dexed and tagged to detect synonyms and to handle cache
coherence requests. In order to support a 4 KB page size,
two virtual bits are needed to index the L; cache. The L,
tag array maintains these bits to enable L; cache lookup.

B. Access Time and Miss Ratio Targets

The performance of a cache is determined both by the
fraction of memory requests it can satisfy (hit/miss ratio)
and the speed at which it can satisfy them (access time).
There have been numerous studies on cache hit/miss ratios
with respect to the cache and line sizes, and the set associa-
tivity [66], [67], [23]. In general, larger caches with higher
set associativity have higher hit ratios. Unfortunately, such
cache topologies tend to incur longer access times, because
in a set-associative cache, after the tags for the lines in the
set are read out, a comparison is performed (in parallel)
and then a mux is used to select the data corresponding to
the matching tag. For instance, results from the on-chip
timing model, cacti, suggest that a 16KB direct-mapped
cache with 16-byte lines is about 20% faster than a simi-
lar 2-way set associative cache [82]. As addresses become
longer, the tag comparisons are slower. A general strategy
for simultaneously achieving fast access time and high hit
ratio is to have a fast and a slow access path. The fast path
achieves fast access time for the majority of memory refer-
ences while the slow path boosts the effective hit ratio. We
refer to these two cases as the fast access and the slow ac-
cess respectively. Techniques for achieving fast cache access
while maintaining high hit ratios can be broadly classified
into the following four categories:

e Decoupled cache: The data array access and line selec-
tion are carried out independently of the tag array access
and comparison so as to circumvent the delay imbalance
between the paths through the tag and data arrays.

o Multiple-access cache: A direct-mapped cache is accessed
sequentially more than once in order to achieve the access
time of a direct-mapped cache for the fast access and the
hit ratio of a set-associative cache as a whole.

o Augmented cache: A direct-mapped cache is augmented
with a small fully-associative cache to improve the overall
hit ratio without lengthening the access time.

o Multi-level cache: A small and fast upstream cache is
used for the fast access while one or more larger and
slower downstream caches are used to capture the fast-
access misses with minimal penalties.

B.1 Decoupled Caches

The defining characteristic of decoupled caches is that
the data can be fetched without any dependency on the re-
sults of tag comparison. This is trivially true in the direct-
mapped case because in such a cache, there is only one
cache line in each cache set. However, it tends to have an
inferior hit ratio due to conflict misses [22]. Direct-mapped
designs also have a cost advantage over set-associative
designs because they require fewer comparators and less
bandwidth out of the data array. This latter fact makes
the direct-mapped design especially suitable for large off-
chip caches that are implemented using commodity SRAMs
with limited pin bandwidth [22], [53].

For a set-associative cache, the line ID has to be known
before the requested data can be delivered from the cache.
In the straightforward implementation, the line ID is ob-
tained from the results of the tag comparison. However,
this dependency on the tag comparison tends to be on the
critical path. A general strategy to circumvent this bot-
tleneck is to predict the line ID. For instance, the Most-
Recently-Used (MRU) line selection scheme predicts that
the requested cache line is the most recently used line in the
target set [69]. The MRU entries of a n-way set-associative
cache is essentially equivalent to a direct-mapped cache of
1/n the size. Depending on the locality of reference, this
simple MRU prediction scheme can be very effective.

A generalization of this technique is to predict the line ID
using a history table [42]. The history table is able to record
the line IDs for more recently referenced cache lines beyond
the MRU lines to increase the prediction accuracy. As the
size of the history table is increased for higher prediction
accuracy, the history table tends to become sparse. The
PowerPC 620 uses a clever implementation of history table
prediction that avoids building a large table [41], [37]. The
PowerPC 620 has 32KB, 8-way “semi-associative” instruc-
tion and data caches. The 8 lines in each set are content-
addressable based on the 8 low-order virtual bits (bits 44-51
in a 64-bit address) of the address tag. This is equivalent
to determining the line ID by matching only a portion (8
bits) of the address tag. The actual cache hit/miss is veri-
fied through the normal tag path. Matching the 8 low-order
tag bits is essentially the same as implementing a history
table that can record 256 line IDs per cache set. However,
in order to avoid any ambiguity in the content-addressable
access, the partial tag must be unique among all the lines
in each cache set. In other words, this design has only the
fast access and thus may adversely affect the cache hit ratio
as the name “semi-associative” implies.

Figure 1 shows the prediction accuracy of the MRU, his-
tory table, and partial-tag methods for the L; data cache.
In this set of simulations, we consider 16 KB 4-way set-
associative caches with 32-byte lines. We assume that the
number of entries in the history table is equal to the to-
tal number of cache lines, and thus for each cache set, 4
line ID predictions can be recorded and indexed by the 2
low-order tag bits. We also simulate the partial-tag scheme
which matches either 6 or 8 lower tag bits to predict the
line ID. This is similar to using a history table that records

100

OMRU

O History
Partial-6
O Partial-8
Cache hit

95

90

- L1 Data Cache

85

80

Accuracy & Hit Ratio (%)

75

§
1]
]
-]
-]
-]
-]
-]
-]
]
-]
]
-]
]
-]
]
-]
]
-]
-]
-]
-]
-]
-]
-]
-]
]
-]
]
-]
]
-]
]
-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
]
-]
]
-]
]
-]
]
-]
-]
-]
-]
-]
-]
-]
-]
]
-]
]
-]
]
-]
]
§

o o s,

70 -
TPC-C-like Compress

Gee Go Li

Vortex Apsi Su2cor

Fig. 1. Comparison of the Three Line-ID Prediction Methods.

64 and 256 line IDs respectively for each cache set.

The results are generally as expected. For example, the
history-table scheme has a much higher prediction accuracy
than the simple MRU scheme for all the simulated appli-
cations. Furthermore, the partial-tag matching technique
is much more accurate than the history table. A partial
tag of 6 bits is able to identify almost all the cache hits.
This is due to the fact that within the working set of these
applications the high-order tag bits tend to change infre-
quently. As a result, there are very few collisions among
these partial tag bits for the lines located in each set.

The history table prediction scheme uses the low-order
address bits to predict the line ID. In the special case of a
2-way set-associative cache, there is an efficient implemen-
tation known as the difference-bit cache that effectively
uses all the address bits without requiring a huge history
table [30]. In a 2-way set-associative cache, the address
tags in the same set must differ by at least one bit. For
each set, the difference-bit cache keeps track of the posi-
tion of the least-significant bit that the two tags differ and
the value of this bit in the first tag. The access time of
this scheme depends on the delay in accessing the recorded
information, decoding the difference-bit position and com-
paring the difference bits.

Recall that in the IBM-3090, the address synonym prob-
lem is resolved by decoupling the cache tag and data arrays.
The tag array has a high set-associativity in order to con-
fine the index bits within the page offset. The data array
has a lower set-associativity and is accessed by some virtual
address bits. This scheme can also be applied to shorten
the cache access time. For instance, in the Direct-mapped
Access Set-associative Check (DASC) cache [63], the data
array is direct-mapped to allow the data to be fetched out
of the cache without waiting for the results of tag compar-
ison. In case of a miss to the direct-mapped location, the
set-associative tag array is able to identify cache hits to
other locations within the set. To increase the proportion
of fast access hits, recently used cache lines are swapped
into the direct-mapped locations.

The decoupled caches described so far achieve fast cache

access by allowing the data to be fetched out of the cache
without waiting for the full tag comparison. To further
improve access time, the processor pipeline may start con-
suming the data speculatively once they become available.
One obvious difficulty in supporting such optimistic use of
cache data is that the CPU must be able to back out of
execution begun with the incorrect data. A straightfor-
ward way to avoid the speculative use of data is to perform
tag comparison on only a subset of the tag array during
the fast access. The path balancing technique proposed in
[49] combines a small line ID history table with a subset
of the cache tag array into a path balance table (PBT).
The history table is used to predict the line ID to avoid
the late-select bottleneck while the subset of the cache tag
array is used to determine whether the prediction is cor-
rect. Together, they non-speculatively improve the cache
access time. A generalized scheme to further improve the
fast access hit ratio is presented in [50].

B.2 Multiple-Access Caches

A multiple-access cache is essentially a direct-mapped
cache that may be accessed more than once (usually twice),
each time with a different mapping (hash) function, to
satisfy a memory request. A fast access time is achieved
when the requested data is located at the primary location,
i.e. the location determined by the primary hash function.
When a miss occurs, the cache is accessed again by an al-
ternative or secondary hash function. A small penalty is
paid if the data is located at the secondary location. Data
swapping between the primary and secondary locations is
necessary to increase the hit ratio to the primary location.
In a multiple-access cache, the LRU replacement scheme
becomes more complicated when the requested data is not
found in either location because the primary/secondary lo-
cations for one reference could be reversed for another ref-
erence. In addition, data swapping requires extra cache
ports to avoid contention with normal cache access.

In [2], a simple rehashing function based on flipping the
highest-order index bit is used. Upon a hit to a secondary
location, the lines located in the primary and secondary
locations are swapped. When a cache miss occurs, the re-
quested line is fetched into the primary location, the line
in the primary location is moved to the secondary location,
and the line in the secondary location is evicted. Although
this scheme appears similar to a 2-way set-associative LRU
cache, it has inferior hit ratio. This is because the pri-
mary location for a reference may be the secondary location
for another reference and vice versa. In other words, this
scheme does not accurately maintain the LRU information
between the primary and secondary locations.

The column-associative cache [3] improves the replace-
ment algorithm by maintaining a rehash bit for each line to
indicate whether it has been accessed using the alternative
hash function. When a primary access misses a line with
the rehash bit turned on, there is no need to search the sec-
ondary location and the line in the primary location is sim-
ply replaced. The rehash bit helps to identify the correct
primary/secondary sequence. However, the MRU/LRU in-

formation is still missing when both locations are used as
the primary location. This deficiency can be corrected by
using the rehash bit as a LRU bit to indicate whether the
primary or secondary location has been more recently ref-
erenced. The search of the secondary location is needed
only when the primary location has been more recently ac-
cessed. This improved scheme not only matches precisely
the 2-way set-associative cache hit ratios, but also elimi-
nates unnecessary searches to the secondary location [14].

Because of locality, memory references are not uniformly
distributed across the sets of a cache. This skew reduces
the effectiveness of a cache because it results in the caching
of a considerable number of less-recently-used lines, which
are less likely to be re-referenced before they are replaced.
Results in [51] show that during the execution of a TPC-C-
like workload, the direct-mapped data cache may contain
more than 40% such less-recently used lines and the hit
ratio to these lines is typically less than 1%.

The group-associative cache [51] dynamically identi-
fies the underutilized cache frames in a direct-mapped
cache and effectively uses them to store the data that are
more likely to be re-referenced. In this technique, a Set-
Reference History Table (SHT) is used to track the cache
lines that have been referenced recently. When a cache miss
occurs and the line being replaced has been referenced re-
cently, it is moved into an alternate location within the
cache. The alternate location is selected from among those
that have not been accessed in the recent past. A small
out-of-position directory (OUT) is used to keep track of
the more-recently used lines that have been so displaced.
In this design, the possible locations that a line can reside
in is not predetermined as is the case in a set-associative
cache. Instead, the cache is dynamically partitioned into
groups of cache lines with the same direct-mapped index
bits. The total number of groups and the individual group
associativity are able to adapt to the reference pattern to
more closely approximate the global LRU scheme.

One major disadvantage of the multiple-access cache is
the need to swap data between the primary and secondary
locations. This need can be eliminated by dynamically
determining the primary set. For instance, an MRU bit
can be maintained for each pair of primary and secondary
locations to indicate the location that should be probed
first [31]. A concern with this approach is the delay in ob-
taining the MRU information. Unlike the MRU line pre-
diction scheme where the ID of the MRU line is needed
only when the correct line is to be selected, the MRU bit
in the multiple-access cache must be available before the
cache is accessed. In addition, as is the case with the MRU
line prediction scheme, the hit ratio to the primary loca-
tion may suffer due to the fact that there is only one MRU
line in each set. In [12], the MRU-bit scheme is extended
by using a steering-bit table to indicate the location where
the cache access should probe first. Such a table is equiv-
alent to the line ID history table and can be many times
bigger than the number of sets to improve the accuracy of
accessing the primary location.

The multiple-access scheme based on hash-rehash func-

tions has been applied to manage the page table access in
the PowerPC architecture [43]. A variation of this scheme
has also been proposed for unifying the Ly instruction and
data caches [15].

B.3 Augmented Caches

As discussed above, the direct-mapped cache has a fast
access time but a poor hit ratio due to conflict misses.
The augmented cache approach attempts to improve the
overall cache hit ratio by augmenting the direct-mapped
cache with a small fully-associative cache. Both caches are
accessed in parallel and due to the small size of the fully-
associative cache, an overall access time that is comparable
to that of the direct-mapped cache can be achieved. The
contents of the two caches are normally disjoint so as to
improve the overall hit ratio.

Several variations of this general approach have been pro-
posed. They differ primarily in the way they use and man-
age the two caches. The wvictim cache is based on the idea
that when a line is replaced in the direct-mapped cache,
it should be moved into the fully-associative cache in case
it will be re-referenced again shortly [28]. In other words,
the fully-associative cache is used to hold the victims of
replacement in the direct-mapped cache so as to convert
some of the conflict misses into hits in the victim cache.

Another way to use the fully-associative cache is based on
the observation that very recently used data have a strong
tendency to be reused again shortly. Therefore, they should
be kept in the fully-associative cache to ensure that they
will not be quickly replaced. The assist cache as imple-
mented in the HP-PA7200 is one such example [34]. The L,
cache of the PA7200 consists of a small fully-associative on-
chip assist cache and a large direct-mapped off-chip cache.
The assist cache is managed as a simple FIFO buffer. The
cache line, upon a miss, is first moved into the assist cache;
it is moved into the off-chip direct-mapped cache upon re-
placement from the assist cache. In contrast to the victim
cache which is placed “after” the direct-mapped cache, the
assist cache is placed “before” the direct-mapped cache to
ensure that the recently used data will not be susceptible
to conflict misses.

The third strategy attempts to reduce conflict misses
by using the direct-mapped cache solely for holding hot
data, i.e. data which are very likely to be reused again.
The data which are less likely to be reused are prevented
from entering the direct-mapped cache to replace the hot
data and cause conflict misses. Instead, they are placed in
the small fully-associative cache. The decision of where to
cache a piece of data can be made in several ways. In the
PAT7200, the data always goes to the assist cache first but
the load and store instructions can carry a “use-once hint”
inserted by software to indicate that the data will be used
only once. When such data are replaced from the assist
cache, they will bypass the off-chip cache.

Instead of relying on software hints of usage patterns,
another approach to allocating data to the two caches is
to keep track of the past reference behavior. For instance,
a reference bit can be maintained for each word in each

cache line in the direct-mapped L cache to record whether
the line exhibits temporal locality [56]. In this scheme,
temporal locality is defined as repeated accesses to any
word in a cache line. When a word is accessed more than
once, the corresponding reference bit is set. The line will be
loaded to the direct-mapped cache upon a miss if it exhibits
temporal locality during the last time that the line is in
the direct-mapped cache. Otherwise, it will be moved into
the fully-associative cache which is referred to as the Non-
Temporal (NT) buffer. Whenever a line is replaced from
the direct-mapped cache the locality indicator is saved at
the Lo entry where the replaced line is located.

In [26], a Memory Access Table (MAT) is used to record
reference behavior at the granularity of memory blocks that
are several times bigger than the cache line. Each MAT
entry is associated with a memory block and contains a
counter to keep track of the frequency of access to that par-
ticular block. This counter is decremented when a cache
line in the block is the target for replacement. When a
miss occurs in the direct-mapped cache, the counter of the
memory block where the requested line is located is com-
pared with the counter of the memory block where the re-
placed line is located. The replacement happens only when
the requested block counter has a larger value. Otherwise,
the requested line is moved into the fully-associative cache
which is called the By-Pass (BP) buffer.

Figure 2 compares the hit ratio of the direct-mapped
cache and several augmented and multiple-access caches
including the victim cache, assist cache, BP-buffer, NT-
buffer, column-associative cache, and group-associative
cache. In this set of simulations, we assume that the small
fully-associative cache contains 32 lines. The L, /L, cache
configurations are the same as those used in Figure 1 except
that the L, caches are direct-mapped. For the BP-buffer
scheme, we use a 1K-entry MAT with 1KB memory blocks.
The rehash-bit is used in the column-associative cache. For
the group-associative cache, we assume that the SHT can
record three-eighths of the more-recently-used lines and
the OUT directory can locate a quarter of the cache lines.
In general, except for the NT-buffer scheme, all the other
caching schemes have overall hit ratio that is higher than
that of the direct-mapped cache. Among these schemes,
the group-associative shows superior overall hit ratio for all
the workloads. The victim cache has the highest primary
hit ratio, which is essentially that of the direct-mapped
cache. All the other schemes suffer some adverse impact
on the primary hit ratio, especially the assist cache, BP-
buffer and NT-buffer. Because the group-associative cache
has the most flexible alternative locations, it suffers the
least impact. The column-associative cache shows overall
hit ratio comparable to that of the victim cache. The as-
sist cache with its simple FIFO design performs reasonably
well, especially for the floating-point intensive applications.

As a whole, the results of selectively allowing cache lines
to bypass the direct-mapped cache based on their past ref-
erence behavior do not look encouraging. The hit ratio
of the NT-buffer scheme is markedly worse than that of
the direct-mapped cache for the TPC-C-like workload and

Dir-mapped
Column-assoc
NT-buffer

©
o
i

] Assist
1 Bp-buffer

1
T Victim

]
I
\
|
\

Hit Ratio (%) - L1 Data Cache

3
I
|
\
\
|
T

\
\

@
o

50

E Hit Alternative o
__ | OHit Dir-mapped| 7] -
- EEEEC s L, Data Li/L2 Size (KB)
___ Miss Ratio
i 5 (TPC-C-like) 16/128 16/256 16/512 16/1024
I lw/lw | 1438 1391 1378 13.70
2| §| lwiaw | 1375 1365 1364 1364
=219
8|3
S| £ | 4w/lw | 10.65 9.85 9.70 9.62
[72]
— L E g
I% Aw/4w | 9.58 9.31 9.27 9.26
g J
& S 5| w- 13.64 13.64 1364 13.64
<
B 2 4w/ 9.26 9.26 9.26 9.26
Fig. 3. Effect of Maintaining Inclusion

TPC-C-like Compress Gcee Go Li Vortex

Apsi

Su2cor Turb3d Property.

Fig. 2. Comparison of Multiple-access and Augmented Caches.

the five integer intensive programs. Even the BP-buffer
scheme, which maintains counters to track reference pat-
terns, has slightly lower overall hit ratios than the other
four schemes for some of the applications. These results
are a reflection of the fact that, because of locality of ref-
erence, it is generally much easier to predict the memory
locations that are likely to be used than those that are not.

B.4 Multi-level Caches

The organization and performance of multi-level caches
have been studied extensively [70], [17], [7], [8], [53]. In
order to overcome the growing performance gap between
processor and DRAM and still satisfy chip area constraints,
most of today’s processors have multiple levels of cache
consisting of small and fast on-chip (on-die) caches and
larger and slower off-chip (off-die) caches. The access time,
hit/miss ratio and chip area tradeoffs of two-level on-chip
caches are discussed in [29]. The results suggest that when
there is sufficient chip area to support L; caches of up to
32 KB, a two-level on-chip cache organization should be
considered. For example, the Alpha 21164 [16] has 8KB
L, instruction and data caches with a unified 96KB on-
chip Ly cache. On the other hand, in the Alpha 21264 [36],
the 2-level on-chip caches are replaced with 64KB single-
level, 2-way set-associative caches, which improve the hit
ratio at the cost of slower (2 cycles) access.

Although multi-level caches are conceptually simple,
some additional issues have to be considered. For example,
the reference locality to the downstream caches is much
weaker because the high-locality requests can often be sat-
isfied by the upstream caches. Therefore, in order to be
able to capture a majority of the L; cache misses, the Lo
cache usually has to be more than an order of magnitude
larger than the L; cache. In addition, it is difficult to main-
tain precise program locality at the L, cache because the
memory requests that are satisfied by the L, cache are typ-
ically not issued to the Lo cache in order to avoid excessive
bandwidth requirements at the large Lo cache. As a result,
L, cache replacement is based on a Least Recently Missed
(LRM) scheme rather than LRU. Mechanisms to supply

the Lo cache with L; cache hit information are evaluated
in [40], [49]. A small performance improvement for zlisp of
the SPEC92 benchmark suite is reported for certain cache
configurations [40].

Another issue to consider in multi-level caches is that the
miss penalty is effectively increased unless a cache miss is
triggered before cache hit/miss is determined. Techniques
for early triggering L; misses are discussed in [49]. In ad-
dition, having multiple levels of cache also delays the han-
dling of cache coherence requests initiated by other proces-
sors or I/O units because the various levels of cache may
have to be searched. As mentioned before, in two-level
cache designs, the Lo cache is usually several times big-
ger than the L; cache. Therefore, when the requested line
is absent from the Lo cache, it is not likely to be in the
L, either. However, for correctness, when this situation is
encountered, the search of the L; cache cannot be omitted.

One way to reduce the delay in satisfying cache coher-
ence requests and prevent unnecessary interruptions to the
processor is to maintain the inclusion property between ad-
jacent cache levels [8]. This property simply states that the
contents of the higher-level cache is included in the lower-
level cache. In other words, a line absent from the Ly cache
cannot be valid in the L; cache. However, imposing the
inclusion property in multi-level caches may reduce cache
performance. First, whenever a line is replaced from the
L, cache, the corresponding line in the L; cache must be
invalidated. Multiple invalidations may be necessary when
the L; and L line sizes are different. Second, the effective
L cache size is reduced.

The impact of the invalidations on L; cache hit ratio
for the TPC-C-like workload is summarized in Figure 3. In
these simulations, we fix the L; cache size at 16KB and vary
the L, cache size from 128KB to 1IMB. We also vary the set-
associativity from 1 to 4 for both caches. The invalidations
have a significant impact when the L, cache is small or
direct-mapped. This impact is further heightened with a
set-associative L cache.

The inclusion property ensures that there is maximum
overlap of cache contents between the L; and Lo caches.

On the other hand, in order to maximize the effective size
of the Lo cache, the cache contents should be disjoint or
exclusive, especially when the Lo cache is not significantly
bigger than the Ly cache [39], [40], [29]. However, main-
taining an exclusive multi-level cache requires higher L; /Lo
bandwidth. In addition, the replacement becomes compli-
cated when the line size and the number of sets are different
between the two caches.

B.5 Other Related Techniques

There are many other techniques that focus primarily on
improving the cache hit ratio. One general approach is to
reduce cache pollution by being selective about what gets
cached [44], [1], [76], although we are very skeptical about
the effectiveness of this type of scheme. Another approach
is to have two separate caches, one designed for capturing
temporal locality and the other, spatial locality [18], [46],
or to have variable fetch sizes to handle poor spatial lo-
cality [54], [26], [33]. A third class of techniques strives to
reduce cache conflict misses through the use of better ad-
dress hash functions and more sophisticated page mapping
techniques [25], [74], [80], [32], [61], [11], [19].

C. Area and Bandwidth Constraints

In order to bridge the growing performance gap between
processor and memory, more and more silicon area is be-
ing dedicated to the on-chip caches. For example, the Intel
Pentium Pro consists of a pair of 8KB on-die instruction
and data L; caches and an on-module 512KB L5 cache. To-
gether these caches occupy 65% of the total die area and
account for 88% of the total number of transistors [48].
The size of the caches is only part of the reason the cache
hierarchy takes up so much die area in today’s processors.
The other reason is that the caches must be able to satisfy
the enormous memory bandwidth demanded by aggressive
multiple-issue dynamic processors which are capable of is-
suing multiple instruction and data references per cycle.

There are several approaches to increasing cache band-
width. A straightforward way is to have separate instruc-
tion and data caches so that the instruction and data ref-
erences can be handled simultaneously. However, as pro-
cessors become increasingly superscalar, this approach by
itself is not sufficient. Because the instruction reference
stream is highly sequential, the instruction bandwidth re-
quired can typically be satisfied by using a wide instruction
cache port (e.g. 16 bytes) and/or an instruction buffer [21]
to deliver multiple instructions per cycle. However, due to
frequent branches, the instruction cache often suffers in-
complete fetches. The trace cache [52], [57] alleviates this
problem by storing the logically contiguous instructions in
a physically contiguous block in a separate cache.

The data reference stream is rarely so well behaved and
therefore requires more aggressive designs to handle multi-
ple requests per cycle. A general technique to enable con-
current memory or cache access is to divide the cache or
memory into banks that can be independently accessed [9],
[71]. For instance, the MIPS R10000 relies on cache banks
that are 2-way interleaved to handle up to two concurrent

data cache accesses [85]. The drawback of this approach is
that there may be contention for the same bank which will
reduce the effective bandwidth. In the Alpha 21164, the
data cache is duplicated to achieve approximately the per-
formance of a true dual-ported cache at the expense of more
than doubling the chip area [16]. The Alpha 21264 [36]
achieves high cache bandwidth by phase-pipelining the ac-
cess so that one index can be supplied on every clock edge.
This fast pipelined access avoids bank conflicts without re-
quiring duplicated cache arrays. The Amdahl 470V ma-
chines also used a pipelined cache [65].

An effective way to increase cache bandwidth without
incurring a huge area cost is to use a small multiple-ported
buffer to retain recently fetched data [81]. The buffer is
searched when a memory request is waiting for an available
port to access the cache. If the requested data is found in
the small buffer, the normal cache access is canceled.

A different approach to reducing the real estate taken up
by the cache hierarchy is to reduce the size of the cache tag
array. A popular technique is to associate each cache tag
with a sector consisting of a fixed number of cache subsec-
tors [38], [47]. This effectively increases the line size from
the standpoint of cache management. In order to avoid
excessive memory and bus traffic, a cache miss will only
bring in the requested line and not the entire sector. One
major drawback of the sector cache is that the allocation
of cache space is done on a sector basis, even though only
some of the subsectors of that sector may be in use. A
recent work [58] confirms that a one-level sector cache usu-
ally does not perform as well as a standard one-level set
associative cache. Nevertheless, the sector cache is useful
when there is a need to integrate the cache tag array of a
large off-chip cache into the processor. The decoupled sec-
tor cache is an attempt to improve cache space utilization
by letting several sectors share a common pool of cache lo-
cations. In the design proposed in [62], each cache set may
contain more than one sector and the lines within a sector
can be stored in any location within the cache set.

Another approach to reducing the area requirement of
the tag array is to avoid duplication of address tags. For
instance, due to locality of reference, the high-order bits
of the address tags tend to change less frequently than the
low-order bits [78]. Therefore, some area may be saved by
keeping these unique high-order address tags in a small ta-
ble and replacing the high-order address tags in the cache
tag array with pointers to this small table. Another source
of tag duplication lies in the fact that the TLB, cache tag
array and possibly branch target buffer all maintain some
form of address tags [64]. Therefore, it is more space-
efficient to implement a unified tag array to save a single
copy of the active address tags. Whether these two pro-
posals can be implemented efficiently is not clear.

III. CHALLENGES AHEAD

During the past decade the performance of processors
has improved by almost 60% each year. Although the ca-
pacity of DRAM has doubled every 18 months during this
same period, its performance has improved by less than

10% per year. Such a trend is expected to continue in the
foreseeable future. Bridging this ever-growing performance
gap between the processor and memory in a cost-effective
manner will require novel cache designs and increasingly
aggressive implementations of cache memories.

Current trends in the industry suggest that in the future,
it may become economically feasible to integrate a proces-
sor on the same die as the DRAM [59]. Such an integration
has the potential to reduce system cost and improve both
DRAM latency and available bandwidth [48]. Although
these improvements may be substantial, the inherently slow
DRAM access still presents a significant gap with respect
to the speed of the processor. For general purpose comput-
ing, cache memories will continue to play a crucial role in
bridging the processor-DRAM performance gap.

REFERENCES

[1] S. Abraham, et al., “Predictability of Load/Store Instruction
Latencies,” MICRO’26, Dec. 1993, pp. 139-152.

[2] A. Agarwal, J. Hennessy, M. Horowitz, “Cache Performance of
Operating Systems and Multiprogramming,” ACM Trans. Com-
puter Systems, Vol. 6(4), Nov. 1988, pp. 393-431.

[3] A. Agarwal, S. Pudar, “Column-Associative Caches: A Tech-
nique for Reducing the Miss Rate of Direct-Mapped Caches,”
20th ISCA, May 1993, pp. 179-190.

[4] T. Ahearn, et al., “Virtual Memory System,” US Patent No.
3781808, Dec. 25, 1973.

[5] J. Alvarez, R. Barner, “Memory System with Logical and Real
Addressing,” US Patent No. 3723976, March 27, 1973.

[6] T. Austin, G. Sohi, “High-Bandwidth Address Translation for
Multiple-Issue Processors,” 23rd ISCA, May 1996, pp. 158—-167.

[7] J. Baer, W. Wang, “Architectural Choices for Multilevel Cache
Hierarchies,” 1/th ISCA, June 1987, pp. 258-261.

[8] —, “On the Inclusion Property for Multi-Level Cache Hierar-
chies,” 15th ISCA, May 1988, pp. 73-80.

[9] F. Baskett, A. Smith, “Interference in Multiprocessor Com-
puter Systems with Interleaved Memory,” Communications of
the ACM, June 1976, Vol. 19(6), pp. 327-334.

[10] S. Bederman, “Cache Management System Using Virtual and
Real Tags in The Cache Directory,” IBM Tech. Disc., 21(11),
April 1979, pp. 4541.

[11] B. Bershad, D. Lee, T. Romer, J. Chen, “Avoiding Conflict
Misses Dynamically in Large Direct-Mapped Caches,” 6th AS-
PLOS, Oct. 1994, pp. 158-170.

[12] B. Calder, D. Grunwald, J. Emer, “Predictive Sequential As-
sociative Cache,” 2nd Symp. on High-Perf. Comp. Arch., Jan.
1996, pp. 244-253.

[13] T. Chiueh, R. Katz, “Eliminating the Address Translation Bot-
tleneck for Physical Address Cache,” 5th ASPLOS, Sep. 1992,
pp. 137-148.

[14] B. Chung, J. Peir, “LRU-Based Column Associative Caches,”
ACM SIGARCH Comp. Arch. News, Vol. 26(2), May 1998, pp
9-17.

[15] N. Drach, A. Seznec, “Semi-Unified Caches,” 1993 Int’l Conf.
Parallel Processing, Aug. 1993, pp. 1 25-28.

[16] J. Edmondson, P. Rubinfeld, R. Preston, V. Rajagopalan, “Su-
perscalar Instruction Execution in the 21164 Alpha Micropro-
cessor,” IEEE Micro, Vol. 15(2), April 1995, pp. 33—43.

[17] R. Fletcher, “Second Level Cache Replacement Method and Ap-
paratus,” US Patent No. 4,464,712, Aug. 1984.

[18] A. Gonzales, C. Aliagas, M. Valero, “A Data Cache with Mul-
tiple Caching Strategies Tuned to Different Types of Locality,”
1995 Int’l Conf. Supercomputing,” 1995, pp. 338-347.

[19] A. Gonzalez, M. Valero, N. Topham, J. Parcerisa, “Eliminating
Cache Conflict Misses Through XOR-Based Placement Func-
tions,” 11th Int’l Conf. Supercomputing, 1997, pp. 76—83.

[20] J. Goodman, “Coherency for Multiprocessor Virtual Address
Caches,” 2nd ASPLOS, Oct. 1987, pp. 72-81.

[21] G. Grohoski, C. Moore, “Instruction Buffer to Support Multiple

(22]
(23]

[24]

(25]

(26]

(27]

(28]

29]
(30]
(31]

32]

33]

(34]

(35]

(36]

37]

(38]
(39]
(40]
[41]
42]
(43]
(44]
(45]

[46]

(47]
(48]

(49]

[50]

[51]

Fetches and Dispatches,” IBM Tech. Disc., Vol. 32(4B), Sep.
1989, pp. 30-31.

M. Hill “A Case for Direct-Mapped Caches,” IEEE Computer,
Vol. 21(12), Dec. 1988, pp. 25-40.

M. Hill, A. Smith, “Evaluating Associativity in CPU Caches,”
IEEE Trans. Computers, Vol. 22(12), Dec. 1989.

K. Hua, et al.,, “Early Resolution of Address Translation in
Cache Design,” Int’l Conf. Comp. Designs, Oct. 1990, pp. 408—
412.

K. Inoue, H. Nonogaki, T. Urakawa, K. Shimizu, “Plural vir-
tual address space processing system,” US Patent No. 4145738,
March 20, 1979.

T. Johnson, W. Hwu, “Run-Time Adaptive Cache Hierarchy
Management via Reference Analysis,” 24/th ISCA, June 1997,
pp. 315-326.

N. Jouppi, “Architectural and Organizational Trade-Offs in the
Design of the MultiTitan CPU,” 15th ISCA, May 1988, pp. 281-
289.

—, “Improving Direct-Mapped Cache Performance by the Addi-
tion of A Small Fully-Associative Cache and Prefetch Buffers,”
17th ISCA, May 1990, pp. 364-373.

N. Jouppi, S. Wilton “Tradeoffs in Two-Level On-Chip
Caching,” 21st ISCA, April 1994, pp. 34-45.

T. Juan, T. Lang, J. Navarro, “The Difference-bit Cache,” 23rd
ISCA, May 1996, pp. 114-120.

R. Kessler, R. Jooss, A Lebeck, M. Hill, “Inexpensive Implemen-
tation of Set-Associativity,” 16th ISCA, May 1989, pp. 131-139.
R. Kessler, M. Hill, “Page Placement Algorithm for Large Real-
Indexed Caches,” ACM Trans. Computer Systems, Vol. 10(4),
Nov. 1992, pp. 338-359.

S. Kumar, C. Wilkerson, “Exploiting Spatial Locality in Data
Caches using Spatial Footprints,” 25th ISCA, June 1998, pp.
357-368.

G. Kurpanek, et al., “PA7200: A PA-RISC Processor with Inte-
grated High Performance MP Bus Interface,” CompCon’94, Feb.
1994, pp. 375-382.

R. Lee, “Precision Architecture,” IEEE Computer, Vol. 22(1),
Jan. 1989, pp. 78-91.

D. Leibholz, R. Razdan, “The Alpha 21264: A 500 MHz Out-of-
Order Execution Microprocessor,” CompCon’97, Feb. 1997, pp.
28-36.

D. Levitan, T. Thomas, P. Tu, “T'he PowerPC 620 Micropro-
cessor: A High Performance Superscalar RISC Microprocessor,”
CompCon’95, Mar. 1995, pp. 285-291.

J. Liptay, “Structural Aspects of the System/360 Model 85, Part
II: The Cache,” IBM Systems Journal, Vol. 7, 1968, pp. 15-21.
L. Liu, “Vertical Partitioning in Cache Hierarchies,” IBM Tech.
Disc., Vol. 30(8), Jan. 1988, pp. 33.

—, “Managing Coherence for Multi-Level Caches,” IBM Re-
search Report, RC 18947, May 1993.

—, “Cache Designs with Partial Address Matching,” MICRO’27,
Dec. 1994, pp. 128-136.

—, “History Table for Set Prediction for Accessing a Set-
Associative Cache,” US Patent No. 5,418,922, May 1995.

“The PowerPC Architecture,” Edited by C. May, E. Silha, R.
Simpson, H. Warren, Morgan-Kaufmann, May 1994.

S. McFarling, “Cache Replacement with Dynamic Exclusion,”
19th ISCA, May 1992, pp. 191-200.

B. Messina, W. Silkman, “Cache Synonym Detection and Han-
dling Mechanism,” US Patent No. 4332010, May 25, 1982.

V. Milutinovic, M. Tomasevic, B. Markovic, M. Tremblay, “The
Split Temporal/Spatial Cache: Initial Performance Analysis,”
SCIzzL-5, March 26, 1996.

H. Olnowich, “Set associative sector cache,” US Patent No.
4493026, Jan. 08, 1985.

D. Patterson, et al., “A Case for Intelligent RAM,” IEEE Micro,
Vol. 17(2), Mar/Apr 1997, pp. 34-44.

J. Peir, W. Hsu, H. Young, S. Ong, “Improving Cache Perfor-
mance with Balanced Tag and Data Paths,” 7th ASPLOS, Oct.
1996, pp. 268-278.

—, “Fast Cache Access with Full-Map Block Directory,” Int’l
Conf. Comp. Designs, Oct. 1997, pp. 578-586.

J. Peir, Y. Lee, W. Hsu, “Capturing Dynamic Memory Reference
Behavior with Adaptive Cache Topology,” 8th ASPLOS, Oct.
1998, pp. 240-250.

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]
[61]

[62]

(63]
[64]
(65]
[66]
[67]

(68]

[79]

(80]

(81]

(82]

A. Peleg, U. Weiser, “Dynamic Flow Instruction Cache Mem-
ory Organized Around Trace Segments Independent of Virtual
Address Line,” US Patent No. 5381533, 1994.

S. Przybylski, M. Horowitz, J. Hennessy, “Characteristics
of Performance-Optimal Multi-Level Cache Hierarchies,” 16th
ISCA, May 1989, pp. 114-121.

S. Przybylski, “The Performance Impact of Block Sizes and
Fetch Strategies,” 17th ISCA, May 1990, pp. 160-169.

F. Reiley, J. Richcreek, “Parallel Addressing of A Storage Hier-
archy in A Data Processing System Using Virtual Address,” US
Patent No. 3693165, Sep. 19, 1972.

J. Rivers, E. Davidson, “Reducing Conflicts in Direct-Mapped
Caches with A Temporality-Based Design,” 1996 Int’l Conf.
Parallel Processing, Aug. 1996, pp. 151-162.

E. Rotenberg, S. Bennett, J. Smith, “Trace Cache: A Low-
Latency Approach to High-Bandwidth Instruction Fetching,”
MICRO’29, Dec. 1996, pp. 24-34.

J. Rothman, “Analysis of Sector Caches for Single Processor
Systems,” In preparation, University of California, Berkeley.

A. Saulsbury, F. Pong, A. Nowatzyk, “Missing the Memory Wall:
The case for Processor/Memory Integration,” 23 ISCA, May
1996, pp. 90-101.

G. Schmidt, J. Schnell, “Dynamic Address Translation Re-
versed,” US Patent No. 3786427, Jan. 15, 1974.

A. Seznec, “A Case for Two-Way Skewed-Associative Caches,”
20th ISCA, May 1993, pp. 169-178.

—, “Decoupled Sectored Caches: Conciliating Low Tag Imple-
mentation cost and Low Miss Ratio,” 21st ISCA, April 1994, pp.
384-393.

—, “DASC Cache,” 1st Symp. on High-Perf. Comp. Arch., Jan.
1995, pp. 134-143.

—, “Don’t use the page number, but a pointer to it,” 23rd ISCA,
May 1996, pp. 104-113.

A. Smith, “Sequential Program Prefetching in Memory Hierar-
chies”, IEEE Computer, Vol. 11(12), Dec., 1978, pp. 7-21.

—, “Cache Memories,” Computing Surveys, Vol. 14(4), Sep.
1982, pp. 473-530.

—, “Cache Memory Design: An Evolving Art,” IEEE Spectrum,
Dec. 1987, pp. 40—44.

—, “Trace Driven Simulation in Research on Computer Archi-
tecture and Operating Systems,” Conf. New Directions in Sim-
ulation for Manufacturing and Comm., Aug. 1994, pp. 43-49.
K. So, R. Rechtschaffen, “Cache Operations by MRU Change,”
Int’l Conf. Comp. Designs, Oct. 1986, pp. 584-586.

F. Sparacio, “Data Processing System with Second Level
Cache,” IBM Tech. Disc., 21(6), Nov. 1978, pp. 2468-2469.

P. Stanley, R. Brown, A. Peters, “Odd/Even Bank Structure for
A Cache Memory,” US Patent No. 4424561, Jan. 03, 1984.

Sun Microsystems, “Introduction to Shade,” April 1993.

—, “UltraSPARC-IIi User’s Manuel,” 1997.

G. Taylor, P. Davis, M. Farmwald, “The TLB Slice - A Low-Cost
High-Speed Address Translation Mechanism,” 17th ISCA, May
1990, pp. 355-363.

S. Tucker, “The IBM 3090 System: An Overview,” IBM System
Journal, Vol. 1(25), 1986.

G. Tyson, M. Farrens, J. Matthews, A. Pleszkun, “A Modified
Approach to Data Cache Management,” MICRO’28, Nov. 1995,
pp- 93-103.

W. Wang, J. Baer, H. Levy, “Organization and Performance of
a Two-Level Virtual Real Cache Hierarchy,” 16th ISCA, May
1989, pp. 140-148.

H. Wang, T. Sun, Q. Yang, “CAT - Caching Address Tags, A
Technique for Reducing Area Cost of On-chip Caches,” 22nd
ISCA, June 1995, pp. 381-390.

C. Webb, J. Liptay, “A High-Frequency Custom CMOS S/390
Microprocessor,” Int’l Conf. Comp. Designs, Oct. 1997, pp. 241-
246.

B. Wheeler, B. Bershad, “Consistency Management for Virtually
Index Caches,” 5th ASPLOS, Oct. 1992, pp. 124—-136.

K. Wilson, K. Olukotun, M. Rosenblum, “Increasing Cache
Port Efficiency for Dynamic Superscalar Microprocessors,” 23rd
ISCA, May 1996, pp. 147-157.

S. Wilton, N. Jouppi, “An Enhanced Access and Cycle Time
Model for On-Chip Caches,” DEC WRL Research Report 93/5,
July 1994.

10

[83] D. Wood, et al., “An In-Cache Address Translation Machanism,”
13th ISCA, June 1986, pp. 358-365.

[84] D. Wood, R. Katz, “Supporting Reference and Dirty Bits in
SPUR’s Virtual Address Cache,” 16th ISCA, May 1989, pp. 122—
130.

[85] K. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, Vol. 16(2), April 1996, pp. 28—40.

Jih-Kwon Peir received his B.S.E. degree from
National Cheng-Kung University, Taiwan,
M.S. degree from University of Wisconsin-
Milwaukee, and Ph.D. degree from University
of Illinois, Urbana-Champaign, both in com-
puter science. He was involved in mainframe
processor design as a research staff member at
IBM T.J. Watson Research Center (1986-92).
During 1992-93, he served as deputy director
in charge of the development of Pentium-based
SMP systems in the Computer Technology Di-
vision of Taiwan’s Industrial Technology Research Institute. He is
currently an Associate Professor in the Computer and Information
Science and Engineering Department at University of Florida. Dr.
Peir’s research interests include computer architecture and perfor-
mance evaluation. He received an IBM Faculty Development Part-
nership Award in 1995 and an NSF Faculty Early Career Development
Award in 1996. He serves as a subject area editor of the Journal of
Parallel and Distributed Computing and is on the editorial board of
the IEEE Transactions on Parallel and Distributed Systems.

Windsor W. Hsu was raised in the city state of
Singapore. He received the B.S.(highest hon-
ors) in electrical engineering and computer sci-
ences from the University of California, Berke-
ley. He is currently a Ph.D. student in the
Computer Science Division of the Department
of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley. Since
1996, Windsor has also been an engineer with
the Storage Systems Department at the IBM
Almaden Research Center. Windsor’s research
interests include computer architecture and performance analysis and
modeling of computer systems. Windsor was a UC Regents’ Scholar
(1991-94), a UC Chancellor’s Scholar (1993-94), a UC Regents’ Fellow
(1994-95) and an IBM Cooperative Fellow (1995-98).

Alan Jay Smith was raised in New Rochelle,
New York. He received the B.S. degree in elec-
trical engineering from the Massachusetts In-
stitute of Technology, and the M.S. and Ph.D.
degrees in computer science from Stanford Uni-
versity. He was an NSF Graduate Fellow. He is
currently a Professor in the Computer Science
Division of the Department of Electrical Engi-
neering and Computer Sciences, University of
California, Berkeley, where he has been on the
faculty since 1974; he was vice chairman of the
EECS department from July, 1982 to June, 1984. His research in-
terests include the analysis and modeling of computer systems and
devices, computer architecture, and operating systems. He has pub-
lished a large number of research papers, including one which won the
IEEE Best Paper Award for the best paper in the IEEETC in 1979.
He also consults widely with computer and electronics companies.
Dr. Smith is a Fellow of the Institute of Electrical and Electronic
Engineers. He is on the Board of Directors (1993-99), and was Chair-
man (1991-93) of the ACM Special Interest Group on Computer Ar-
chitecture (SIGARCH), was Chairman (1983-87) of the ACM Special
Interest Group on Operating Systems (SIGOPS), was on the Board
of Directors (1985-89) of the ACM Special Interest Group on Mea-
surement and Evaluation (SIGMETRICS), was an ACM National
Lecturer (1985-6) and an IEEE Distinguished Visitor (1986-7), was
an Associate Editor of the ACM Transactions on Computer Systems
(TOCS) (1982-93), is a subject area editor of the Journal of Parallel
and Distributed Computing and is on the editorial board of the Jour-
nal of Microprocessors and Microsystems. He was program chairman
for the Sigmetrics '89 / Performance ’89 Conference, program co-
chair for the Second (1990) Sixth (1994) and Ninth (1997) Hot Chips
Conferences and has served on numerous program committees.

